Новости космоса и технологий. » Физика » Искусственный интеллект решает уравнение Шредингера

Искусственный интеллект решает уравнение Шредингера

Опубликовал: Admin, 22-12-2020, 10:27, Физика, 55, 0

Искусственный интеллект решает уравнение Шредингера

Группа ученых из Freie Universität Berlin разработала метод искусственного интеллекта (AI) для вычисления основного состояния уравнения Шредингера в квантовой химии. Цель квантовой химии - предсказывать химические и физические свойства молекул, основываясь исключительно на расположении их атомов в пространстве, избегая необходимости в ресурсоемких и трудоемких лабораторных экспериментах. В принципе, этого можно добиться, решив уравнение Шредингера, но на практике это чрезвычайно сложно.

До сих пор было невозможно найти точное решение для произвольных молекул, которое можно было бы эффективно вычислить. Но команда Freie Universität разработала метод глубокого обучения, который позволяет достичь беспрецедентного сочетания точности и вычислительной эффективности. ИИ преобразовал многие технологические и научные области, от компьютерного зрения до материаловедения. «Мы считаем, что наш подход может существенно повлиять на будущее квантовой Химии », - говорит профессор Франк Ноэ, возглавлявший работу группы. Результаты были опубликованы в авторитетном журнале Химия природы .

Центральное место как в квантовой химии, так и в уравнении Шредингера занимает волновая функция - математический объект, полностью определяющий поведение электронов в молекуле. Волновая функция - это многомерная сущность, и поэтому чрезвычайно трудно уловить все нюансы, которые кодируют, как отдельные электроны влияют друг на друга. Многие методы квантовой химии фактически отказываются от выражения волновой функции в целом, вместо этого пытаясь определить только энергию данной молекулы. Однако это требует выполнения приближений, что ограничивает качество предсказания таких методов.

Другие методы представляют волновую функцию с использованием огромного количества простых математических строительных блоков, но такие методы настолько сложны, что их невозможно применить на практике для более чем горстки атомов. «Уйти от обычного компромисса между точностью и вычислительными затратами - это высшее достижение в Квантовой химии », - объясняет доктор Ян Германн из Свободного университета Берлина, который разработал ключевые особенности метода в исследовании. «Пока что наиболее популярным из таких выбросов является чрезвычайно экономичная теория функционала плотности. Мы считаем, что предлагаемый нами подход глубокого« квантового Монте-Карло »может быть столь же, если не более успешным. Он обеспечивает беспрецедентную точность при минимальной по-прежнему приемлемые вычислительные затраты ".

глубокийнейронная сеть Разработанный командой профессора Ноэ, новый способ представления волновых функций электронов. «Вместо стандартного подхода к составлению волновой функции из относительно простых математических компонентов мы разработали искусственную нейронную сеть, способную изучать сложные модели того, как электроны расположены вокруг ядер», - объясняет Ноэ. «Одной из особенностей электронных волновых функций является их антисимметрия. Когда происходит обмен двумя электронами, волновая функция должна менять свой знак. Чтобы этот подход работал, нам пришлось встроить это свойство в архитектуру нейронной сети», - добавляет Германн. Эта особенность, известная как «принцип исключения Паули», является причиной того, что авторы назвали свой метод «PauliNet».

Помимо принципа исключения Паули, электронные волновые функции также обладают другими фундаментальными физическими свойствами, и большая часть инновационного успеха PauliNet заключается в том, что он интегрирует эти свойства в глубокую нейронную сеть, а не позволяет глубокому обучению определять их, просто наблюдая за данными. «Включение Фундаментальной физики В ИИ необходимо для его способности делать значимые прогнозы в полевых условиях», - говорит Ноэ. «Именно здесь ученые могут внести существенный вклад в ИИ, и именно на этом сосредоточена моя группа».

Перед тем, как метод Германа и Ноэ будет готов к промышленному применению, предстоит еще много проблем. «Это все еще фундаментальное исследование, - соглашаются авторы, - но это свежий подход к вековой проблеме молекулярных и материальных наук, и мы воодушевлены возможностями, которые оно открывает».


Источник


У данной публикации еще нет комментариев. Хотите начать обсуждение?

Написать комментарий
Имя:*
E-Mail:
Введите код: *
Кликните на изображение чтобы обновить код, если он неразборчив


Поиск по сайту
Полезные ссылки
Оцените работу сайта

TEHNONEWS

Новости космоса технологий нанотехнологий физики и химии